Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in SMT Carolin Lawrence¹, Artem Sokolov^{1,2}, Stefan Riezler¹

Introduction

Commercial MT systems can easily log explicit or implicit feedback from users. Feedback is only available for one prediction, references are not available (**bandit setup**). The log is **biased** by the predictions of the logging system.

Counterfactual learning theory offers options to solve this problem but requires a stochastic logging system. Instead, commercial MT systems want to output only the most likely translation and are thus **deterministic**.

We show through clever usage of control variates, that learning is possible despite of this. In domain-adaptation experiments with simulated feedback, we can report improvements of up to **2 BLEU**. Further, we can show that deterministic experiments are on a par with their stochastic counterparts.

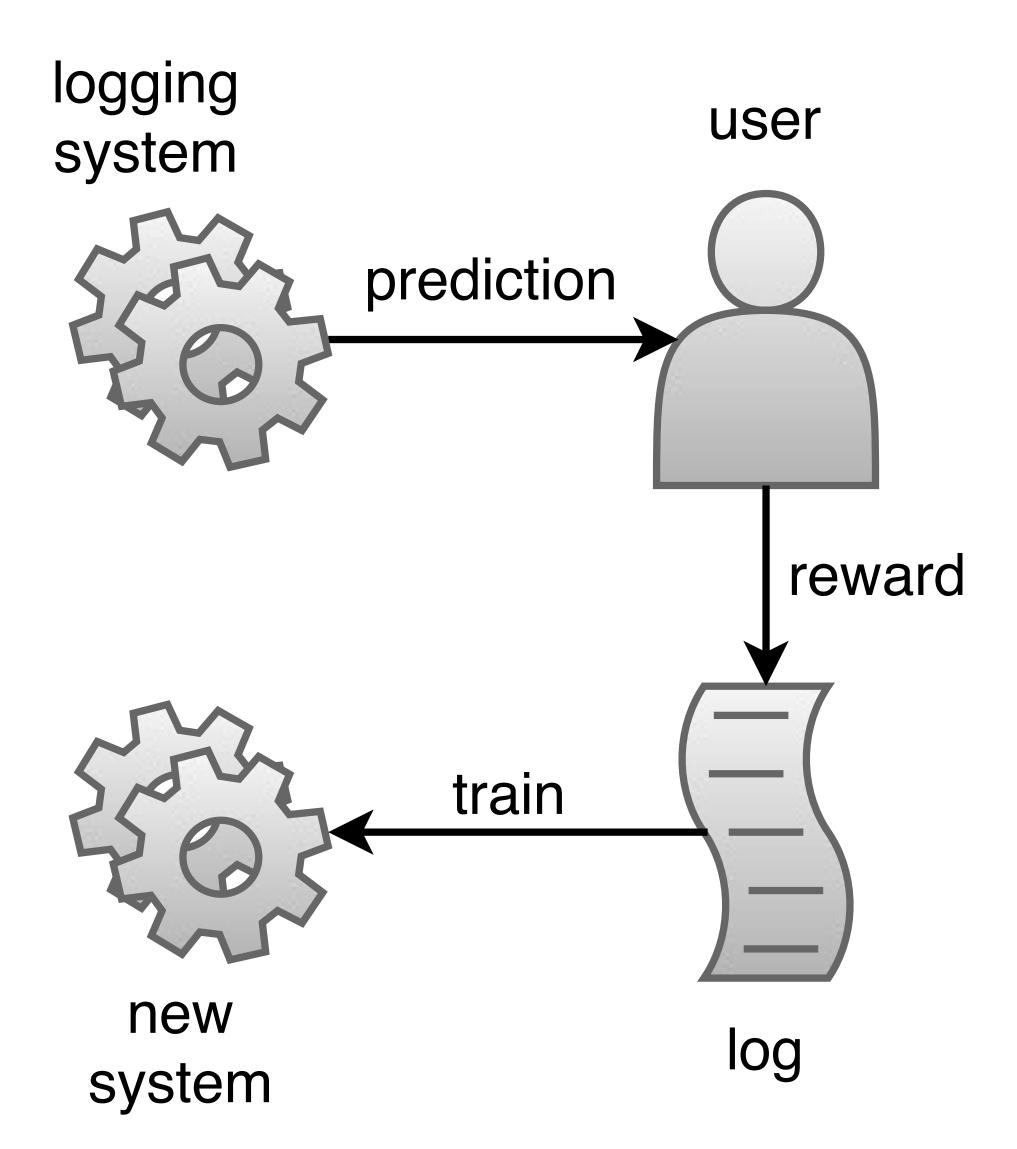


Figure 1: Offline learning from partial feedback.

1 Department of Computational Linguistics, Heidelberg University, Germany. 2 Amazon Development Center, Germany.

Definitions

- collected: log $\mathcal{D} = \{(x_t, y_t, \delta_t)\}_{t=1}^n$ where a logging system π_0 generated y_t given x_t and loss $\delta_t \in [-1, 0]$ is only given for the one y_t
- stochastic logging: record probability $\pi_0(y_t|x_t)$
- probability of current system: $\pi_w(y_t|x_t)$
- direct method (DM) predictor $\hat{\delta}$: can predict a reward for any input sequence

Objectives

Inverse Propensity Scoring (IPS)/ **Deterministic Propensity Matching (DPM)**

 $\hat{R}_{\mathsf{IPS/DPM}}(\pi_w) = \frac{1}{n} \sum_{t=1}^n \delta_t \rho_w(y_t | x_t)$

stochastic case $ho_w(y_t|x_t) = rac{\pi_w(y_t|x_t)}{\pi_0(y_t|x_t)}$

- importance sampling corrects the bias in log
- y_t is sampled from the model distribution π_0 \rightarrow exploration/exploitation trade-off

deterministic case

```
\rho_w(y_t|x_t) = \pi_w(y_t|x_t) \text{ as } \pi_0(y_t|x_t) = 1
```

Problem **①**

- importance sampling is disabled
- y_t is the most likely translation under π_0 \rightarrow exploration seems to be missing

Problem **2**

• $R_{\text{IPS/DPM}}(\pi_w)$ is maximum if all the log's probabilities $\pi_w(y_t|x_t)$ are set to 1 \rightarrow increasing probability for low δ_t is undesired

Solution to **①**

• **implicit exploration**: despite the deterministic logging, there is enough exploration because of the differing input context

 \rightarrow deterministic logging can keep up with its stochastic counterpart

Problem **B**

+ Additive Control Variate:

Doubly Robust (DR) / Doubly Controlled (DC) Solution to **B**

$\hat{R}_{\hat{c}\,\mathsf{DR}/}$

 $\hat{R}_{\text{DR/DC}}(\pi_w)$ is $\hat{R}_{\hat{c} \text{DR}/\hat{c} \text{DC}}(\pi_w)$ with $\hat{c} = 1$ as defined by (Dudik et al., 2011)

Log Creation. Logs were created by training a model on out-of-domain data & using this model to translate in-domain data. Feedback is simulated with negative per-sentence BLEU as the loss.

DM predictor $\hat{\delta}$. The predictor is a Scikit random forest model trained using the decoder's features as input & negative per-sentence BLEU as the output.

+ Multiplicative Control Variate: Reweighting (+R)Solution to **2**

 define a probability distribution over the log \rightarrow increasing probability for low δ_t will now decrease the objective as desired

 $\hat{R}_{\mathsf{IPS}+\mathsf{R}/\mathsf{DPM}+\mathsf{R}}(\pi_w) = \sum_{t=1}^n \delta_t \bar{\rho}_w(y_t | x_t) \quad \textcircled{1}$ with $\bar{\rho}_w(y_t|x_t) = rac{
ho_w(y_t|x_t)}{\sum_t
ho_w(y_t|x_t)}$

• $R_{\text{IPS}+R/\text{DPM}+R}(\pi_w)$ is maximum if the probability $\pi_w(y_t|x_t)$ of the highest δ_t is 1 & the rest 0 \rightarrow avoids logged data & potentially bad alternatives take up the probability mass of π_w

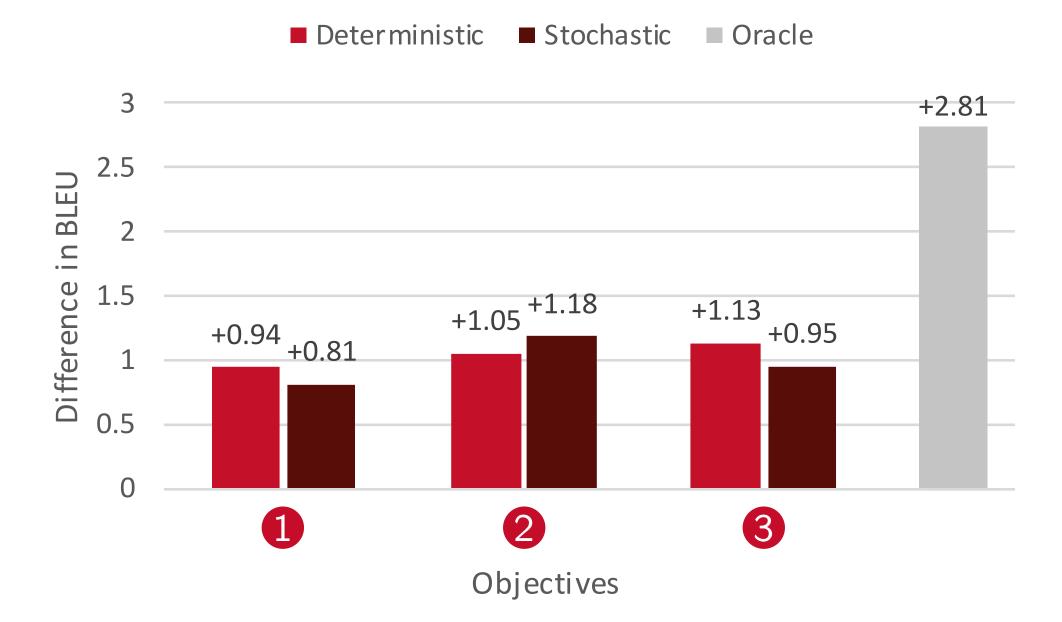
• use a DM predictor to evaluate the top scoring translations for each $x_t \rightarrow$ avoiding logged data only possible if good alternatives take its place

The optimal \hat{c} can be derived: $\hat{c} = \frac{\text{Cov}(X,Y)}{\text{Var}(Y)}$

Experiments

Setup. Domain adaptation from Europarl (EP) to TED (de-en) & to News (fr-en) using phrase-based decoder CDEC & empirical risk minimization. Oracle systems where trained on references & MERT.

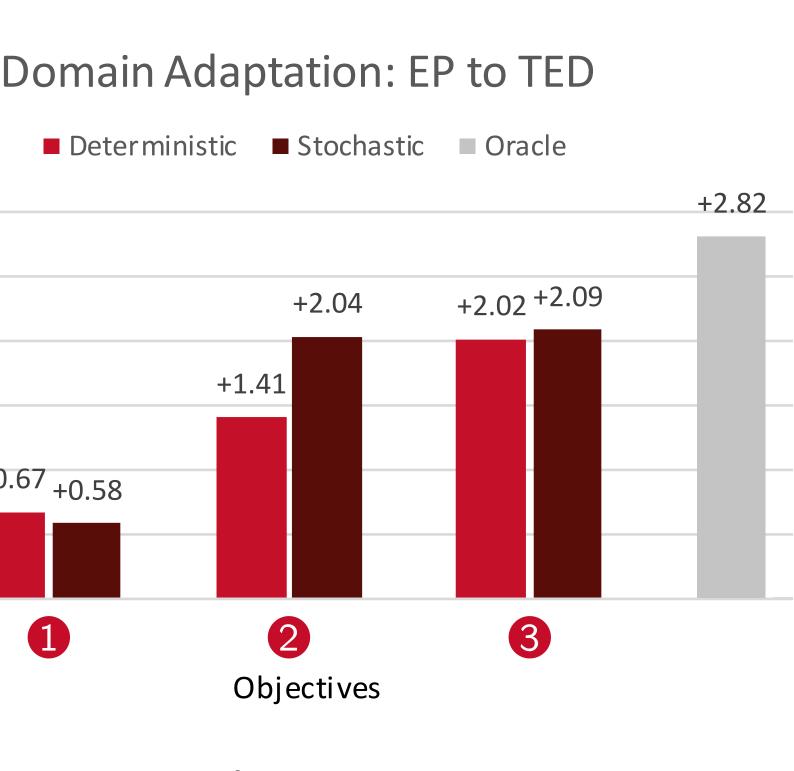
	L
3	
2.5	
2	
5	
1	 +0.
).5	
0	





2

This research was supported in part by the German research foundation (DFG), and in part by a research cooperation grant with the Amazon Development Center Germany.



Domain Adaptation: EP to News

Take Away

- counterfactual learning works for MT despite large action space
- control variates fix problems of the simpler
- \hat{c} needs to be high to outperform setting $\hat{c} = 1$ deterministic logging as good as stochastic \rightarrow great advantage for e-commerce MT

Acknowledgements

