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Overview

Commercial Machine Translation (MT) sys-
tems can easily log explicit or implicit feedback
from users. To avoid the risk of showing infe-
rior translations, commercial M T systems want
to employ exploration-free policies which only
output the most likely translation and are thus
deterministic.

We show that the inverse and reweighted

propensity scoring estimators can lead to possi-
ble degeneracies in both stochastic and deter-
ministic setups. Using doubly robust methods,
these degeneracies can avoided.

In domain-adaptation experiments with simu-
lated feedback, we can report improvements of
up to 2 BLEU. Further, we can show that de-
terministic experiments are on a par with their
stochastic counterparts due to implicit explo-
ration.

Definitions

= collected: log D = {(x+, ys, 0¢) }7— where a
logging system 1 generated y; given x; and a
€ 10, 1] is observed

= stochastic logging: record probability 1(y:|x:)

reward 0,

= probability of current system: 7, (y;|z)

- direct method (DM) predictor 0:

can predict a reward for any input sequence

Objectives

Inverse Propensity Scoring (IPS)/
Deterministic Propensity Matching (DPM)

‘A/lPS/DPM(Ww) = %2?21 Ot Pl Yt Tt

stochastic case

pulytlar) = T

deterministic case
pw(yt‘ft) — Ww(yt|$t> as ,u(yt|xt) — ]

Problem @

» importance sampling is disabled

= y; is the most likely translation under p
— exploration seems to be missing

Solution to @

implicit exploration: despite the deterministic
logging, there is enough exploration because of the
differing input context

— deterministic
stochastic counterpart [1]

ogging can keep up with its

Carolin Lawrence!.

Problem @
Theorem 1 max.Vips and max. Vppy if

\V/(yt,ﬂft, 575) cD: W(yt‘ﬂjt) =1A 6t > (.

‘ZPS/DPM(T(w) is at maximum if all entries in the
log with non-zero rewards receive probability 1
— increasing probability for low 0; is undesired

Solution to @
+ Multiplicative Control Variate [4]:
Reweighting (+R)

define a probability distribution over the log
— increasing probability for low 0; will now
decrease the objective as desired

VipsR/DPM+R(Tw) = 211 0¢Puw (Y| Tt) L
with py,(y|z;) = Luitd
Problem ©

Definition Let D" = maxsD, then
D = Dm J D\D™**.

Theorem 2 maazﬂ\%pgm and ma:cWVDpMJFR if
H(xt, Yy, 6maaz) - prat T -
(O, 1] /N\ \V/(yt, Lt, 575) - D\Dmaw . Ty — 0.

‘ZPSJFR/DPMJFR(WUJ) is at maximum if the
probability 7, (y:|x;) of the highest d; is greater
than 0 and the rest is 0

— avoids logged data and potentially bad
alternatives take up the probability mass of

Solution to ©
+ Additive Control Variate [2]:
Doubly Robust (DR) / Doubly Controlled (DC)

use a DM predictor to evaluate the top scoring
translations for each x; —avoiding logged data
only possible if good alternatives take its place

(6 — &01) pulye|xe)

A

Vepr/enc(Tw) = %Z?;l

e yeyien 0, y) pulylz)| ©

Cov(X,Y)
Var(Y')

VDR/DC(%}) S VéDR/eDc(Ww) with ¢ = 1 2,
as defined by [2].

The optimal ¢ can be derived: ¢ =

Experiments [3]

Translation System. A Gibbs model that, given
an input sentence x;, defines probability distribu-
tion over all possible output sentences v,

QQ(ngb(xuyt))

Zyey(xt) ea(wT¢(xt,y)) .
The number of possible output sentences may be

Ww(yt‘xt) —

very large. For example, assuming an output vo-

cabulary of 90, 000 words and a sentence length of

200, there are 90, 000" possible outputs. Thus,
the search for the most probable translation is of-

ten approximated, e.g. via beam search.
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What IF
Workshop

Setup. Domain adaptation from Europarl (EP)
to TED (de-en) and to News (fr-en) using
phrase-based decoder CDEC and empirical risk
minimization. Oracle systems where trained on
references and the tuning algorithm MERT.

Log Creation. Logs were created by training a
model on out-of-domain data and using this
model to translate in-domain data. Feedback is
simulated with per-sentence BLEU which is
based on n-gram matching with regards to the
gold translation.

DM predictor 4. The predictor is a Scikit
random forest model trained using the decoder’s
features as input and per-sentence BLEU as the
output.

Domain Adaptation: EP to TED
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Take Away

» counterfactual learning works for M T despite
large action space

« control variates fix problems of the simpler
objectives

» deterministic logging as good as stochastic
due to implicit exploration

—> great advantage for e-commerce MT
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