

A Corpus and Semantic Parser for Multilingual Natural Language Querying of OpenStreetMap

Carolin Haas, Stefan Riezler

Heidelberg University
Institute for Computational Linguistics

June 14, 2016

Motivation: Natural Language Interface to OSM

OSM http://www.openstreetmap.org/

- community-built database of geographic data, containing over
 3 billion data objects
- existing search tools are very simple: "Where are 3 star hotels in Paris" returns no answer, while objects with tags "tourism=hotel" and "stars=3" exist
- ▶ "fuzzy" language (e.g. "closest hotel") is not understood
- ▶ to find these objects, one needs to issue a complicated query: "area[name="Paris"]→.a;node(area.a)[tourism="hotel"][stars="3"];out;"
- \rightarrow develop a semantic parser to be able to answer such questions

Contents

Component Overview

NLMAPS: Corpus Creation

Semantic Parsing

Multilingual Database Access

Summary

OpenStreetMap

contains nodes, ways and relations

Overpass

is a language to query the OSM database

```
area[name="Paris"]->.a;way(area.a)[name="Tour Eiffel"];out;
<?xml version="1.0" encoding="UTF-8"?>
(osm version="0.6" generator="Overpass API">
<note>The data included in this document is from www.openstreetm
<meta osm base="2015-03-24T12:22:03Z" areas="2015-03-23T20:07:02</pre>
  <wav id="5013364">
   <tag k="architect" v="Stephen Sauvestre;Gustave Eiffel;Mauri</pre>
   <tag k="building" v="ves"/>
   <tag k="building:colour" v="#706550"/>
   <tag k="building:material" v="iron"/>
   <tag k="building:min height" v="4"/>
   <tag k="building:part" v="no"/>
   <tag k="building:shape" v="pyramidal"/>
   <tag k="height" v="324 m"/>
   <tag k="image" v="http://upload.wikimedia.org/wikipedia/comm</pre>
   <tag k="importance" v="international"/>
   <tag k="laver" v="2"/>
   <tag k="man made" v="tower"/>
   <tag k="name" v="Tour Eiffel"/>
```

Pipeline

NLMAPS' Machine Readable Language (MRL)

- ► NLMAPS' MRL is variable free & can be viewed as a tree
- Overpass with meta functions
- open vocabulary in value positions
- ▶ has a concise, unambiguous CFG

query(area(keyval(name, 'Paris')), nwr(keyval(tourism, 'hotel'),keyval(wheelchair, 'yes')), findkey(name))

NLMAPS Questions

Example Questions

- ▶ What is the closest pharmacy from the Heidelberg castle?
- What are the websites and names of the museums or art centers in walking distance of the Eiffel Tower?
- What are the opening times of the Sainsbury's Local closest to the Edinburgh Waverley in Edinburgh?

MRL Components

Statistics

	NLMAPS	Geoquery ¹	Free 917 $^{\rm 2}$
# sent.	2,380	880	917
tokens	25,906	6,660	6,785
types	1,002	296	2,038
avg. sent. length.	10.88	7.57	7.4
avg. types per sent.	0.42	0.34	2.22
avg. singleton per sent.	0.1	0.1	1.52
avg. NT per sent.	21	16	16
FRES	82.18	86.61	83.77

 $^{^{1}}$ (Zelle & Mooney 1996) 2 (Berant et al., 2013)

Experiments Using SMT Semparse

(Andreas et al., 2014)

The tree-based MRL allows the formula to be broken into words \rightarrow semantic parsing can be treated as a monolingual MT task

Parsing Results

		Precision	Recall	F1
1	+intersect +stem +cdec	84.69	62.42	71.87
2	+intersect +stem +cdec +sparse	84.40	65.8	73.95^{1}
3	+intersect +stem +cdec +pass +cfg	89.45	65.19	75.41^{1}
4	+ intersect + stem + cdec + sparse + pass + cfg	89.04	68.3	77.3 ^{1,2,3}

Multilingual Database Access

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

(Riezler et al., 2014)

Source

"Wie viele Hotels in Paris können mit einem Rollstuhl befahren werden?"

Multilingual Database Access: Idea

- ▶ prediction $\hat{y} = \arg\max_{y \in Y(x)} \langle w, \phi(x, y) \rangle$
- structured perceptron $w = w + \phi(x^{(i)}, y^{(i)}) \phi(x^{(i)}, \hat{y})$
- \triangleright $y^{(i)}$ might be unreachable

Option 1 find translation that is as close as possible: $1 - BLEU(y^{(i)}, y)$

Option 2 find alternatives by grounding them in semantic parsing, if answered correctly it is seen as another reference

- ▶ RAMPION (Gimpel & Smith 2012): Option 1
- ► EXEC: Option 2
- ▶ Rebol: Combines Option 1 & 2

Multilingual Database Access: Results

method	Р	R	F1	BLEU
1CDEC	67.8	24.89	36.41	38.3
$_{ m 2Exec}$	75.2	31.36	44.27^{1}	40.85^{1}
3Rampion	78.21	38.75	$51.82^{1,2}$	$51.82^{1,2}$
4Rebol	80.76	41.02	54.41 ^{1,2,3}	51.88 ^{1,2}

Table 1: Significant improvements are marked with superscript

Summary

- ▶ introduces the OSM database to QA
- a new complex corpus for QA where fuzzy language plays an important role
- MT based approach to semantic parsing works well for tree-based MRLs
- offers a new search tool for the OSM community
- can be extended to multilingual database access

http://nlmaps.cl.uni-heidelberg.de/

- Stefan Riezler, Patrick Simianer, and Carolin Haas.
 Response-based learning for grounded machine translation.
 In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), Baltimore, MD, 2014.
- J. Berant, A. Chou, R. Frostig, and P. Liang.
 Semantic parsing on Freebase from question-answer pairs.
 In Empirical Methods in Natural Language Processing (EMNLP), 2013.
- John M. Zelle and Raymond J. Mooney.

 Learning to parse database queries using inductive logic programming.

 In *Proceedings of AAAI*, Portland, OR, 1996.
- Kevin Gimpel and Noah A. Smith.

 Structured ramp loss minimization for machine translation.

 In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (HLT-NAACL), Stroudsburg, PA, 2012.